Fluid limit theorems for stochastic hybrid systems with application to neuron models

Abstract : This paper establishes limit theorems for a class of stochastic hybrid systems (continuous deterministic dynamic coupled with jump Markov processes) in the fluid limit (small jumps at high frequency), thus extending known results for jump Markov processes. We prove a functional law of large numbers with exponential convergence speed, derive a diffusion approximation and establish a functional central limit theorem. We apply these results to neuron models with stochastic ion channels, as the number of channels goes to infinity, estimating the convergence to the deterministic model. In terms of neural coding, we apply our central limit theorems to estimate numerically impact of channel noise both on frequency and spike timing coding.
Type de document :
Pré-publication, Document de travail
42 pages, 4 figures. 2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00447808
Contributeur : Michele Thieullen <>
Soumis le : vendredi 15 janvier 2010 - 19:37:17
Dernière modification le : mercredi 12 octobre 2016 - 01:03:01

Identifiants

  • HAL Id : hal-00447808, version 1
  • ARXIV : 1001.2474

Collections

PMA | INSMI | UPMC | USPC

Citation

K. Pakdaman, M. Thieullen, G. Wainrib. Fluid limit theorems for stochastic hybrid systems with application to neuron models. 42 pages, 4 figures. 2010. <hal-00447808>

Partager

Métriques

Consultations de la notice

80