On Some Sets of Dictionaries Whose omega-Powers Have a Given Complexity

Abstract : A dictionary is a set of finite words over some finite alphabet X. The omega-power of a dictionary V is the set of infinite words obtained by infinite concatenation of words in V. Lecomte studied in [Omega-powers and descriptive set theory, JSL 2005] the complexity of the set of dictionaries whose associated omega-powers have a given complexity. In particular, he considered the sets $W({\bf\Si}^0_{k})$ (respectively, $W({\bf\Pi}^0_{k})$, $W({\bf\Delta}_1^1)$) of dictionaries $V \subseteq 2^\star$ whose omega-powers are ${\bf\Si}^0_{k}$-sets (respectively, ${\bf\Pi}^0_{k}$-sets, Borel sets). In this paper we first establish a new relation between the sets $W({\bf\Sigma}^0_{2})$ and $W({\bf\Delta}_1^1)$, showing that the set $W({\bf\Delta}_1^1)$ is ``more complex" than the set $W({\bf\Sigma}^0_{2})$. As an application we improve the lower bound on the complexity of $W({\bf\Delta}_1^1)$ given by Lecomte. Then we prove that, for every integer $k\geq 2$, (respectively, $k\geq 3$) the set of dictionaries $W({\bf\Pi}^0_{k+1})$ (respectively, $W({\bf\Si}^0_{k+1})$) is ``more complex" than the set of dictionaries $W({\bf\Pi}^0_{k})$ (respectively, $W({\bf\Si}^0_{k})$) .
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00432736
Contributeur : Olivier Finkel <>
Soumis le : mardi 17 novembre 2009 - 10:18:13
Dernière modification le : vendredi 4 janvier 2019 - 17:32:32
Document(s) archivé(s) le : jeudi 17 juin 2010 - 20:39:41

Fichiers

Dictionaries-revised-2-MLQ.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Finkel. On Some Sets of Dictionaries Whose omega-Powers Have a Given Complexity. Mathematical Logic Quarterly, Wiley, 2010, 56 (5), pp.452-460. ⟨10.1002/malq.200810154⟩. ⟨hal-00432736⟩

Partager

Métriques

Consultations de la notice

289

Téléchargements de fichiers

271