Mining temporal patterns with quantitative intervals

Thomas Guyet 1 René Quiniou 1
1 DREAM - Diagnosing, Recommending Actions and Modelling
Inria Rennes – Bretagne Atlantique , IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
Abstract : In this paper we consider the problem of discovering frequent temporal patterns in a database of temporal sequences, where a temporal sequence is a set of items with associated dates and durations. Since the quantitative temporal information appears to be fundamental in many contexts, it is taken into account in the mining processes and returned as part of the extracted knowledge. To this end, we have adapted the classical APriori [1] framework to propose an efficient algorithm based on a hyper-cube representation of temporal sequences. The extraction of quantitative temporal information is performed using a density estimation of the distribution of event intervals from the temporal sequences. An evaluation on synthetic data sets shows that the proposed algorithm can robustly extract frequent temporal patterns with quantitative temporal extents.
Type de document :
Communication dans un congrès
4th International Workshop on Mining Complex Data, (IEEE ICDM) Workshop, 2008, Italy. pp.10, 2008
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00431445
Contributeur : Thomas Guyet <>
Soumis le : vendredi 13 novembre 2009 - 08:48:28
Dernière modification le : mercredi 2 août 2017 - 10:09:49
Document(s) archivé(s) le : mardi 16 octobre 2012 - 13:46:10

Fichier

Guyet-MiningTemporalPattern.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00431445, version 1

Citation

Thomas Guyet, René Quiniou. Mining temporal patterns with quantitative intervals. 4th International Workshop on Mining Complex Data, (IEEE ICDM) Workshop, 2008, Italy. pp.10, 2008. <hal-00431445>

Partager

Métriques

Consultations de
la notice

283

Téléchargements du document

244