A one-dimensional Keller-Segel equation with a drift issued from the boundary

Abstract : We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).
Type de document :
Pré-publication, Document de travail
MAP5 2009-23. short version, 8 pages. 2009
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00424649
Contributeur : Vincent Calvez <>
Soumis le : vendredi 16 octobre 2009 - 16:31:20
Dernière modification le : jeudi 11 janvier 2018 - 06:24:06
Document(s) archivé(s) le : mardi 15 juin 2010 - 22:46:36

Fichiers

Calvez.Meunier.Note.1D.KS.Boun...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00424649, version 1
  • ARXIV : 0910.3324

Collections

Citation

Vincent Calvez, Nicolas Meunier. A one-dimensional Keller-Segel equation with a drift issued from the boundary. MAP5 2009-23. short version, 8 pages. 2009. 〈hal-00424649〉

Partager

Métriques

Consultations de la notice

420

Téléchargements de fichiers

207