Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Powder Technology Année : 2009

Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed

Résumé

Titanium oxide (TiO2) submicron powders have been treated by Chemical Vapor Deposition (CVD) in a vibro-fluidized bed in order to deposit silicon layers of nanometer scale on each individual grain from silane (SiH4). Experimental results show that for the conditions tested, the original granular structure of the powders is preserved for 90% of the initial bed weight while the remaining 10% consists of agglomerates in millimetre range found near the distributor of the reactor. A comparison between experimental and modelling results using the MFIX code shows that for Geldart's Group B alumina particles (Al2O3), the model represents both the bed hydrodynamics and silane conversion rates quite well. The future objective is to extend the simulation capability to cohesive submicron powders in order to achieve better predictability of the phenomena governing ultrafine particles.

Domaines

Matériaux

Dates et versions

hal-00417365 , version 1 (15-09-2009)

Identifiants

Citer

Loïc Cadoret, Nicolas Reuge, S. Pannala, Madhava Syamlal, Cécile Rossignol, et al.. Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed. Powder Technology, 2009, 190 (1-2), pp. 185-191. ⟨10.1016/j.powtec.2008.04.083⟩. ⟨hal-00417365⟩
55 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More