Learning the Morphological Diversity

Abstract : This article proposes a new method for image separation into a linear combination of morphological components. Sparsity in global dictionaries is used to extract the cartoon and oscillating content of the image. Complicated texture patterns are extracted by learning adapted local dictionaries that sparsify patches in the image. These global and local sparsity priors together with the data fidelity define a non-convex energy and the separation is obtained as a stationary point of this energy. This variational optimization is extended to solve more general inverse problems such as inpainting. A new adaptive morphological component analysis algorithm is derived to find a stationary point of the energy. Using adapted dictionaries learned from data allows to circumvent some difficulties faced by fixed dictionaries. Numerical results demonstrate that this adaptivity is indeed crucial to capture complex texture patterns.
Type de document :
Article dans une revue
SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2010, 3 (3), pp.646-669. <10.1137/090770783>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00415782
Contributeur : Gabriel Peyré <>
Soumis le : mercredi 7 juillet 2010 - 22:35:03
Dernière modification le : mercredi 28 septembre 2016 - 16:14:51
Document(s) archivé(s) le : jeudi 1 décembre 2016 - 05:02:25

Fichier

PeyreFadiliStarckSIIMS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gabriel Peyré, Jalal M. Fadili, Jean-Luc Starck. Learning the Morphological Diversity. SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2010, 3 (3), pp.646-669. <10.1137/090770783>. <hal-00415782v2>

Partager

Métriques

Consultations de
la notice

576

Téléchargements du document

245