Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Transportation Distances on the Circle and Applications

Abstract : This paper is devoted to the study of the Monge-Kantorovich theory of optimal mass transport and its applications, in the special case of one-dimensional and circular distributions. More precisely, we study the Monge-Kantorovich distances between discrete sets of points on the unit circle, in the case where the ground distance between two points x and y is defined as h(d(x,y)), where d is the geodesic distance on the circle and h a convex and increasing function. We first prove that computing a Monge-Kantorovich distance between two given sets of pairwise different points boils down to cut the circle at a well chosen point and to compute the same distance on the real line. This result is then used to obtain a metric between 1D and circular discrete histograms, which can be computed in linear time. A particular case of this formula has already been used in [Rabin, Delon and Gousseau SIAM 09}] for the matching of local features between images, involving circular histograms of gradient orientations. In this paper, other applications are investigated, in particular dealing with the hue component of color images. In a last part, a study is conducted to compare the advantages and drawbacks of transportation distances relying on convex or concave cost functions, and of the classical L-1 distance.
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger
Contributeur : Julien Rabin Connectez-vous pour contacter le contributeur
Soumis le : mardi 1 juin 2010 - 09:49:56
Dernière modification le : mardi 18 janvier 2022 - 15:28:03
Archivage à long terme le : : jeudi 23 septembre 2010 - 17:58:49


Fichiers produits par l'(les) auteur(s)



Julie Delon, Julien Rabin, Yann Gousseau. Transportation Distances on the Circle and Applications. Journal of Mathematical Imaging and Vision, Springer Verlag, 2011, 41 (147), ⟨10.1007/s10851-011-0284-0⟩. ⟨hal-00399832v3⟩



Consultations de la notice


Téléchargements de fichiers