On the tiling by translation problem

Abstract : On square or hexagonal lattices, tiles or polyominoes are coded by words. The polyominoes that tile the plane by translation are characterized by the Beauquier-Nivat condition. By using the constant time algorithms for computing the longest common extensions in two words, we provide a linear time algorithm in the case of pseudo-square polyominoes, improving the previous quadratic algorithm of Gambini and Vuillon. We also have a linear algorithm for pseudo-hexagon polyominoes not containing arbitrarily large square factors. The results are extended to more general tiles.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2008, 157 (3), pp.464-475. <10.1016/j.dam.2008.05.026>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00395229
Contributeur : Xavier Provençal <>
Soumis le : lundi 15 juin 2009 - 11:49:09
Dernière modification le : vendredi 24 juillet 2009 - 11:40:42

Identifiants

Collections

Citation

Srecko Brlek, Xavier Provençal, Jean-Marc Fédou. On the tiling by translation problem. Discrete Applied Mathematics, Elsevier, 2008, 157 (3), pp.464-475. <10.1016/j.dam.2008.05.026>. <hal-00395229>

Partager

Métriques

Consultations de la notice

81