Black Hole Entropy and SU(2) Chern-Simons Theory

Abstract : We show that the isolated horizon boundary condition can be treated in a manifestly SU(2) invariant manner. The symplectic structure of gravity with the isolated horizon boundary condition has an SU(2) Chern-Simons symplectic structure contribution at the horizon with level k=a_H/ (4\pi \beta \ell^2_p). Upon quantization, state counting is expressed in terms of the dimension of Chern-Simons Hilbert spaces on a sphere with marked points (defects). In the large black hole limit quantum horizon degrees of freedom can be modelled by a single intertwiner. The coupling constant of the defects with the Chern Simons theory on the horizon is precisely given by the ratio of the area contribution of the defect to the macroscopic area a_H, namely \lambda= 16\pi^2 \beta \ell^2_p (j(j+1))^(1/2)/a_H.
Type de document :
Article dans une revue
Physical Review Letters, American Physical Society, 2010, 105 (3), 〈10.1103/PhysRevLett.105.031302〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00391827
Contributeur : Alejandro Perez <>
Soumis le : jeudi 4 juin 2009 - 21:05:22
Dernière modification le : vendredi 4 janvier 2019 - 17:33:11

Lien texte intégral

Identifiants

Citation

Jonathan Engle, Karim Noui, Alejandro Perez. Black Hole Entropy and SU(2) Chern-Simons Theory. Physical Review Letters, American Physical Society, 2010, 105 (3), 〈10.1103/PhysRevLett.105.031302〉. 〈hal-00391827〉

Partager

Métriques

Consultations de la notice

296