Intelligent adaptive monitoring for cardiac surveillance

Abstract : Monitoring patients in intensive care units is a critical task. Simple condition detection is generally insufficient to diagnose a patient and may generate many false alarms to the clinician operator. Deeper knowledge is needed to discriminate among alarms those that necessitate urgent therapeutic action. We propose an intelligent monitoring system that makes use of many artificial intelligence techniques: artificial neural networks for temporal abstraction, temporal reasoning, model based diagnosis, decision rule based system for adaptivity and machine learning for knowledge acquisition. To tackle the difficulty of taking context change into account, we introduce a pilot aiming at adapting the system behavior by reconfiguring or tuning the parameters of the system modules. A prototype has been implemented and is currently experimented and evaluated. Some results, showing the benefits of the approach, are given.
Type de document :
Communication dans un congrès
European Conference on Artificial Intelligence, Jul 2008, Greece. pp.653-657, 2008
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger
Contributeur : Elisa Fromont <>
Soumis le : mardi 31 mars 2009 - 11:27:01
Dernière modification le : jeudi 15 novembre 2018 - 11:57:04
Document(s) archivé(s) le : jeudi 10 juin 2010 - 19:20:10


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00372053, version 1


Lucie Callens, Guy Carrault, Marie-Odile Cordier, Elisa Fromont, François Portet, et al.. Intelligent adaptive monitoring for cardiac surveillance. European Conference on Artificial Intelligence, Jul 2008, Greece. pp.653-657, 2008. 〈hal-00372053〉



Consultations de la notice


Téléchargements de fichiers