Time dependent Heston model

Abstract : The use of the Heston model is still challenging because it has a closed formula only when the parameters are constant [Hes93] or piecewise constant [MN03]. Hence, using a small volatility of volatility expansion and Malliavin calculus techniques, we derive an accurate analytical formula for the price of vanilla options for any time dependent Heston model (the accuracy is less than a few bps for various strikes and maturities). In addition, we establish tight error estimates. The advantage of this approach over Fourier based methods is its rapidity (gain by a factor 100 or more), while maintaining a competitive accuracy. From the approximative formula, we also derive some corollaries related first to equivalent Heston models (extending some work of Piterbarg on stochastic volatility models [Pit05]) and second, to the calibration procedure in terms of ill-posed problems.
Type de document :
Article dans une revue
SIAM Journal on Financial Mathematics, SIAM, 2010, 1 (1), pp.289-325. 〈10.1137/090753814〉
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00370717
Contributeur : Emmanuel Gobet <>
Soumis le : mardi 24 mars 2009 - 22:47:44
Dernière modification le : mercredi 16 mars 2016 - 14:31:54
Document(s) archivé(s) le : jeudi 10 juin 2010 - 18:32:58

Fichier

BenhamouGobetMiri_HestonModel....
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Eric Benhamou, Emmanuel Gobet, Mohammed Miri. Time dependent Heston model. SIAM Journal on Financial Mathematics, SIAM, 2010, 1 (1), pp.289-325. 〈10.1137/090753814〉. 〈hal-00370717〉

Partager

Métriques

Consultations de la notice

369

Téléchargements de fichiers

1298