Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations

Abstract : We derive a semi-discrete two-dimensional elliptic global Carleman estimate, in which the usual large parameter is connected to the one-dimensional discretization step-size. The discretizations we address are some families of quasi-uniform meshes. As a consequence of the Carleman estimate, we derive a partial spectral inequality of the form of that proved by G.~Lebeau and L.~Robbiano, in the case of a discrete elliptic operator in one dimension. Here, this inequality concerns the lower part of the discrete spectrum. The range of eigenvalues/eigenfunctions we treat is however quasi-optimal and represents a constant portion of the discrete spectrum. For the associated parabolic problem, we then obtain a uniform null controllability result for this lower part of the spectrum. Moreover, with the control function that we construct, the $L^2$ norm of the final state converges to zero super-algebraically as the step-size of the discretization goes to zero. An observability-like estimate is then deduced.
Type de document :
Article dans une revue
Journal de Mathématiques Pures et Appliquées, Elsevier, 2010, 93 (3), pp.240-273. 〈10.1016/j.matpur.2009.11.003〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00366496
Contributeur : Franck Boyer <>
Soumis le : mercredi 4 novembre 2009 - 22:15:05
Dernière modification le : lundi 14 janvier 2019 - 10:02:04
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 13:38:02

Fichier

BHLR_09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Franck Boyer, Florence Hubert, Jérôme Le Rousseau. Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. Journal de Mathématiques Pures et Appliquées, Elsevier, 2010, 93 (3), pp.240-273. 〈10.1016/j.matpur.2009.11.003〉. 〈hal-00366496v2〉

Partager

Métriques

Consultations de la notice

785

Téléchargements de fichiers

124