Inference for Partially Observed Multitype Branching Processes and Ecological Applications

Abstract : Multitype branching processes with immigration in one type are used to model the dynamics of stage-structured plant populations. Parametric inference is first carried out when count data of all types are observed. Statistical identifiability is proved together with deriva- tion of consistent and asymptotically Gaussian estimators for all the parameters ruling the population dynamics model. However, for many ecological data, some stages (i.e. types) cannot be observed in prac- tice. We study which mechanisms can still be estimated given the model and the data available in this context. Parametric inference is investigated in the case of Poisson distributions. We prove that identifiability holds for only a subset of the parameter set depend- ing on the number of generations observed, together with consistent and asymptotic properties of estimators. Finally, simulations are per- formed to study the behaviour of the estimators when the model is no longer Poisson. Quite good results are obtained for a large class of models with distributions having mean and variance within the same order of magnitude, leading to some stability results with respect to the Poisson assumption.
Type de document :
Pré-publication, Document de travail
31 pages, 1 figure. 2008
Liste complète des métadonnées
Contributeur : Catherine Laredo <>
Soumis le : mardi 24 février 2009 - 18:43:06
Dernière modification le : mercredi 4 janvier 2017 - 16:16:28
Document(s) archivé(s) le : mardi 8 juin 2010 - 19:16:13


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00363957, version 1
  • ARXIV : 0902.4520



Catherine Laredo, Olivier David, Aurélie Garnier. Inference for Partially Observed Multitype Branching Processes and Ecological Applications. 31 pages, 1 figure. 2008. <hal-00363957>



Consultations de
la notice


Téléchargements du document