Skew constacyclic codes over Galois rings

Abstract : We generalize the construction of linear codes via skew polynomial rings by using Galois rings instead of finite fields as coefficients. The resulting non commutative rings are no longer left and right Euclidean. Codes that are principal ideals in quotient rings of skew polynomial rings by a two sided ideals are studied. As an application, skew constacyclic self-dual codes over GR(4, 2) are constructed. Euclidean self-dual codes give self-dual Z(4)-codes. Hermitian self-dual codes yield 3-modular lattices and quasi-cyclic self-dual Z(4)-codes.
Type de document :
Article dans une revue
Advances in Mathematics of Communications, AIMS, 2008, 2 (3), pp.273-292
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00359833
Contributeur : Marie-Annick Guillemer <>
Soumis le : lundi 9 février 2009 - 14:51:32
Dernière modification le : mercredi 2 août 2017 - 10:11:23

Identifiants

  • HAL Id : hal-00359833, version 1

Collections

Citation

Delphine Boucher, Patrick Sole, Félix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, AIMS, 2008, 2 (3), pp.273-292. <hal-00359833>

Partager

Métriques

Consultations de la notice

249