Nonparametric data association for particle filter based multi-object tracking : application to multi-pedestrian tracking

Abstract : This article deals with the following issue: how to track a varying number of pedestrians through observations by means of a 4-plane laser sensor. In order to answer to the multiple target tracking problem and more specifically pedestrian tracking, we propose in this paper a statistical approach using a particle filter based on nonparametric data association methods. This approach allows to go beyond the conventional Gaussian assumption and to use as well as possible each particle during track/observation association by means of either a "Parzen Window" kernel method or a K-nearest neighbor algorithm. Simulated and experimental results show the relevance of this method compared to the usual Gaussian window methods.
Type de document :
Communication dans un congrès
IEEE Intelligent Vehicles Symposium (IV), Jun 2008, Eindhoven, European Union. pp.CD-ROM, 2008
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00344115
Contributeur : Paul Checchin <>
Soumis le : mercredi 3 décembre 2008 - 17:09:24
Dernière modification le : lundi 8 octobre 2018 - 11:40:01

Identifiants

  • HAL Id : hal-00344115, version 1

Citation

Samuel Gidel, Christophe Blanc, Thierry Chateau, Paul Checchin, Laurent Trassoudaine. Nonparametric data association for particle filter based multi-object tracking : application to multi-pedestrian tracking. IEEE Intelligent Vehicles Symposium (IV), Jun 2008, Eindhoven, European Union. pp.CD-ROM, 2008. 〈hal-00344115〉

Partager

Métriques

Consultations de la notice

96