SLAM process using Polynomial extended Kalman filter: Experimental Assessment

Abstract : This paper deals with the Simultaneous Localization and Map building (SLAM) problem using an implementation of the Polynomial Extended Kalman Filter (PEKF). The proposed PEKF implementation is a filtering algorithm which is a polynomial transformation of state evolution and measurement equations. The performances of the algorithm have been evaluated through simulations. The comparison with the standard Extended Kalman Filter shows that the PEKF provides more consistent estimates in a SLAM framework. Experiments on real data are presented too.
Type de document :
Communication dans un congrès
10th IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV), Dec 2008, Hanoi, Vietnam. pp.P0978, 2008
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00343515
Contributeur : Paul Checchin <>
Soumis le : lundi 1 décembre 2008 - 18:01:53
Dernière modification le : lundi 8 octobre 2018 - 11:40:01

Identifiants

  • HAL Id : hal-00343515, version 1

Citation

François Chanier, Paul Checchin, Christophe Blanc, Laurent Trassoudaine. SLAM process using Polynomial extended Kalman filter: Experimental Assessment. 10th IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV), Dec 2008, Hanoi, Vietnam. pp.P0978, 2008. 〈hal-00343515〉

Partager

Métriques

Consultations de la notice

100