On the parity of generalized partition functions, III.

Abstract : Improving on some results of J.-L. Nicolas, the elements of the set ${\cal A}={\cal A}(1+z+z^3+z^4+z^5)$, for which the partition function $p({\cal A},n)$ (i.e. the number of partitions of $n$ with parts in ${\cal A}$) is even for all $n\geq 6$ are determined. An asymptotic estimate to the counting function of this set is also given.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00333009
Contributor : Aurélie Reymond <>
Submitted on : Wednesday, October 22, 2008 - 11:18:50 AM
Last modification on : Thursday, March 7, 2019 - 11:46:54 AM
Document(s) archivé(s) le : Monday, June 7, 2010 - 9:13:54 PM

Files

benSNZ.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00333009, version 1
  • ARXIV : 0810.4017

Citation

Fethi Ben Said, Jean-Louis Nicolas, Ahlem Zekraoui. On the parity of generalized partition functions, III.. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2010, 22, pp.51-78. ⟨hal-00333009⟩

Share

Metrics

Record views

247

Files downloads

118