The l1/2 law and multifractal topography: theory and analysis

Abstract : Over wide ranges of scale, orographic processes have no obvious scale; this has provided the justification for both deterministic and monofractal scaling models of the earth's topography. These models predict that differences in altitude (?h) vary with horizontal separation (l) as ?h ˜ lH. The scaling exponent has been estimated theoretically and empirically to have the value H=1/2. Scale invariant nonlinear processes are now known to generally give rise to multifractals and we have recently empirically shown that topography is indeed a special kind of theoretically predicted "universal" multifractal. In this paper we provide a multifractal generalization of the l1/2 law, and propose two distinct multifractal models, each leading via dimensional arguments to the exponent 1/2. The first, for ocean bathymetry assumes that the orographic dynamics are dominated by heat fluxes from the earth's mantle, whereas the second - for continental topography - is based on tectonic movement and gravity. We test these ideas empirically on digital elevation models of Deadman's Butte, Wyoming.
Type de document :
Article dans une revue
Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 1995, 2 (1), pp.16-22
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00331032
Contributeur : Publication Egu <>
Soumis le : dimanche 1 janvier 1995 - 08:00:00
Dernière modification le : jeudi 22 novembre 2018 - 14:12:18
Document(s) archivé(s) le : lundi 7 juin 2010 - 19:59:22

Fichier

npg-2-16-1995.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-00331032, version 1

Citation

S. Lovejoy, D. Lavallée, D Schertzer, P. Ladoy. The l1/2 law and multifractal topography: theory and analysis. Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 1995, 2 (1), pp.16-22. 〈hal-00331032〉

Partager

Métriques

Consultations de la notice

445

Téléchargements de fichiers

86