UPMC/LIP6 at ImageCLEFphoto 2008: on the exploitation of visual concepts (VCDT)

Sabrina Tollari 1, * Marcin Detyniecki 1 Ali Fakeri-Tabrizi 1 Massih-Reza Amini 1 Patrick Gallinari 1
* Corresponding author
1 MALIRE - Machine Learning and Information Retrieval
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : In this paper, we focus our efforts on the study of how to automatically extract and exploit visual concepts. First, in the Visual Concept Detection Task (VCDT), we look at the mutual exclusion and implication relations between VCDT concepts in order to improve the automatic image annotation by Forest of Fuzzy Decision Trees (FFDTs). In our experiments, the use of the relations do not improve nor worsen the quality of the annotation. Our best VCDT run is the 4th ones under 53 submitted runs (3rd team under 11 teams). Second, in the Photo Retrieval Task (ImageCLEFphoto), we use the FFDTs learn in VCDT task and WordNet to improve image retrieval. We analyse the influence of extracted visual concept models to the diversity and precision. This study shows that there is a clear improvement, in terms of precision or cluster recall at 20, when using the visual concepts explicitly appearing in the query.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00323593
Contributor : Sabrina Tollari <>
Submitted on : Monday, September 22, 2008 - 3:19:12 PM
Last modification on : Thursday, March 21, 2019 - 2:30:05 PM

Identifiers

  • HAL Id : hal-00323593, version 1

Citation

Sabrina Tollari, Marcin Detyniecki, Ali Fakeri-Tabrizi, Massih-Reza Amini, Patrick Gallinari. UPMC/LIP6 at ImageCLEFphoto 2008: on the exploitation of visual concepts (VCDT). QUAERO/ImageCLEF Workshop on Multimedia Information Retrieval Evaluation, Sep 2008, Aarhus, Denmark. pp.1-10, 2008. 〈hal-00323593〉

Share

Metrics

Record views

177