Convolution equations on lattices: periodic solutions with values in a prime characteristic field

Abstract : These notes are inspired by the theory of cellular automata. A linear cellular automaton on a lattice of finite rank or on a toric grid is a discrete dinamical system generated by a convolution operator with kernel concentrated in the nearest neighborhood of the origin. In the present paper we deal with general convolution operators. We propose an approach via harmonic analysis which works over a field of positive characteristic. It occurs that a standard spectral problem for a convolution operator is equivalent to counting points on an associate algebraic hypersurface in a torus according to the torsion orders of their coordinates.
Type de document :
Chapitre d'ouvrage
Kapranov, M.; Kolyada, S.; Manin, Y.I.; Moree, P.; Potyagailo, L.A. Geometry and Dynamics of Groups and Spaces. In Memory of Alexander Reznikov., Birkh¨auser, pp.719-740, 2008, Progress in Mathematics, Vol. 265
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00323515
Contributeur : Mikhail Zaidenberg <>
Soumis le : lundi 22 septembre 2008 - 13:46:05
Dernière modification le : jeudi 2 mars 2017 - 01:02:14

Identifiants

Collections

Citation

Mikhail Zaidenberg. Convolution equations on lattices: periodic solutions with values in a prime characteristic field. Kapranov, M.; Kolyada, S.; Manin, Y.I.; Moree, P.; Potyagailo, L.A. Geometry and Dynamics of Groups and Spaces. In Memory of Alexander Reznikov., Birkh¨auser, pp.719-740, 2008, Progress in Mathematics, Vol. 265. <hal-00323515>

Partager

Métriques

Consultations de la notice

179