Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue J Gen Virol Année : 2008

Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1.

Résumé

Since the first report of frameshifting in HCV-1, its sequence has been the paradigm for examining the mechanism that directs alternative translation of the hepatitis C virus (HCV) genome. The region encoding the core protein from this strain contains a cluster of 10 adenines at codons 8-11, which is thought to direct programmed ribosomal frameshifting (PRF), but formal evidence for this process has not been established unequivocally. To identify the mechanisms of frameshifting, this study used a bicistronic dual luciferase reporter system in a coupled transcription/translation in vitro assay. This approach revealed +1 as well as -1 frameshifting, whereas point mutations, selectively introduced between codons 8 and 11, demonstrated that PRF did not readily account for frameshifting in strain HCV-1. Sequence analysis of cDNAs derived from RNA transcribed by T7 RNA polymerase in the dual luciferase reporter system, as well as in both a subgenomic replicon and an infectious clone derived from strain JFH1, identified additions and deletions of adenines between codons 8 and 11 due to transcriptional slippage (TS). Moreover, RNA isolated from cells infected with virus generated by JFH1 containing the A-rich tract also contained heterogeneity in the adenine sequence, strongly suggesting TS by the NS5B viral polymerase. These findings have important implications for insight into frameshifting events in HCV-1 and demonstrate for the first time the involvement of transcriptional slippage in this recoding event.Since the first report of frameshifting in HCV-1, its sequence has been the paradigm for examining the mechanism that directs alternative translation of the hepatitis C virus (HCV) genome. The region encoding the core protein from this strain contains a cluster of 10 adenines at codons 8-11, which is thought to direct programmed ribosomal frameshifting (PRF), but formal evidence for this process has not been established unequivocally. To identify the mechanisms of frameshifting, this study used a bicistronic dual luciferase reporter system in a coupled transcription/translation in vitro assay. This approach revealed +1 as well as -1 frameshifting, whereas point mutations, selectively introduced between codons 8 and 11, demonstrated that PRF did not readily account for frameshifting in strain HCV-1. Sequence analysis of cDNAs derived from RNA transcribed by T7 RNA polymerase in the dual luciferase reporter system, as well as in both a subgenomic replicon and an infectious clone derived from strain JFH1, identified additions and deletions of adenines between codons 8 and 11 due to transcriptional slippage (TS). Moreover, RNA isolated from cells infected with virus generated by JFH1 containing the A-rich tract also contained heterogeneity in the adenine sequence, strongly suggesting TS by the NS5B viral polymerase. These findings have important implications for insight into frameshifting events in HCV-1 and demonstrate for the first time the involvement of transcriptional slippage in this recoding event.
Fichier non déposé

Dates et versions

hal-00315260 , version 1 (27-08-2008)

Identifiants

  • HAL Id : hal-00315260 , version 1
  • PUBMED : 18559926

Citer

M. Ratinier, S. Boulant, C. Combet, P. Targett-Adams, J. Mclauchlan, et al.. Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1.. J Gen Virol, 2008, 89, pp.1569-1578. ⟨hal-00315260⟩
26 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More