Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Virology Année : 2005

Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features.

Résumé

The building block of hepatitis C virus (HCV) nucleocapsid, the core protein, together with viral RNA, is composed of different domains involved in RNA binding and homo-oligomerization. The HCV core protein 1-169 (C(HCV)169) and its N-terminal region from positions 1 to 117 (C(HCV)117) were expressed in Escherichia coli and purified to homogeneity suitable for biochemical and biophysical characterizations. The overall conformation and the oligomeric properties of the resulting proteins C(HCV)169 and C(HCV)117 were investigated by using analytical centrifugation, circular dichroism, intrinsic fluorescence measurements, and limited proteolysis. Altogether, our results show that core protein (C(HCV)169) behaves as a membranous protein and forms heterogeneous soluble micelle-like aggregates of high molecular weight in the absence of detergent. In contrast, it behaves, in the presence of mild detergent, as a soluble, well-folded, noncovalent dimer. Similar to findings observed for core proteins of HCV-related flaviviruses, the HCV core protein is essentially composed of alpha-helices (50%). In contrast, C(HCV)117 is soluble and monodispersed in the absence of detergent but is unfolded. It appears that the folding of the highly basic domain from positions 2 to 117 (2-117 domain) depends on the presence of the 117-169 hydrophobic domain, which contains the structural determinants ensuring the binding of core with cellular membranes. Finally, our findings provide valuable information for further investigations on isolated core protein, as well as for attempts to reconstitute nucleocapsid particles in vitro.The building block of hepatitis C virus (HCV) nucleocapsid, the core protein, together with viral RNA, is composed of different domains involved in RNA binding and homo-oligomerization. The HCV core protein 1-169 (C(HCV)169) and its N-terminal region from positions 1 to 117 (C(HCV)117) were expressed in Escherichia coli and purified to homogeneity suitable for biochemical and biophysical characterizations. The overall conformation and the oligomeric properties of the resulting proteins C(HCV)169 and C(HCV)117 were investigated by using analytical centrifugation, circular dichroism, intrinsic fluorescence measurements, and limited proteolysis. Altogether, our results show that core protein (C(HCV)169) behaves as a membranous protein and forms heterogeneous soluble micelle-like aggregates of high molecular weight in the absence of detergent. In contrast, it behaves, in the presence of mild detergent, as a soluble, well-folded, noncovalent dimer. Similar to findings observed for core proteins of HCV-related flaviviruses, the HCV core protein is essentially composed of alpha-helices (50%). In contrast, C(HCV)117 is soluble and monodispersed in the absence of detergent but is unfolded. It appears that the folding of the highly basic domain from positions 2 to 117 (2-117 domain) depends on the presence of the 117-169 hydrophobic domain, which contains the structural determinants ensuring the binding of core with cellular membranes. Finally, our findings provide valuable information for further investigations on isolated core protein, as well as for attempts to reconstitute nucleocapsid particles in vitro.
Fichier non déposé

Dates et versions

hal-00313681 , version 1 (27-08-2008)

Identifiants

  • HAL Id : hal-00313681 , version 1

Citer

S. Boulant, C. Vanbelle, C. Ebel, F. Penin, Jp Lavergne. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features.. Journal of Virology, 2005, 79, pp.11353-11365. ⟨hal-00313681⟩
24 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More