Density estimates and concentration inequalities with Malliavin calculus

Abstract : We show how to use the Malliavin calculus to obtain density estimates of the law of general centered random variables. In particular, under a non-degeneracy condition, we prove and use a new formula for the density of a random variable Z which is measurable and differentiable with respect to a given isonormal Gaussian process. Among other results, we apply our techniques to bound the density of the maximum of a general Gaussian process from above and below; several new results ensue, including improvements on the so-called Borell-Sudakov inequality. We then explain what can be done when one is only interested in or capable of deriving concentration inequalities, i.e. tail bounds from above or below but not necessarily both simultaneously.
Type de document :
Pré-publication, Document de travail
24 pages. 2008
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00311755
Contributeur : Ivan Nourdin <>
Soumis le : mercredi 20 août 2008 - 23:16:41
Dernière modification le : lundi 29 mai 2017 - 14:27:10
Document(s) archivé(s) le : jeudi 3 juin 2010 - 18:39:08

Fichiers

nourdin-viens.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00311755, version 1

Collections

PMA | INSMI | UPMC | USPC

Citation

Ivan Nourdin, Frederi Viens. Density estimates and concentration inequalities with Malliavin calculus. 24 pages. 2008. <hal-00311755>

Partager

Métriques

Consultations de
la notice

241

Téléchargements du document

112