Optimization of Accelerated Solvent Extraction for Polyhalogenated Dibenzo-p-Dioxins and Benzo-p-furans in Mineral and Environmental Matrixes Using Experimental Designs - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Analytical Chemistry Année : 2003

Optimization of Accelerated Solvent Extraction for Polyhalogenated Dibenzo-p-Dioxins and Benzo-p-furans in Mineral and Environmental Matrixes Using Experimental Designs

Résumé

This paper deals with the optimization of accelerated solvent extraction (ASE) for the analysis of the polychlorinated dibenzo-p-dioxins, benzo-p-furans (PCDD/Fs), mixed bromine/chlorine-dibenzo-p-dioxins, and benzo-p-furans (so-called MXDD/Fs) in solid samples. Previous theoretical studies have shown that these compounds exhibit similar electronic properties. It is reasonable to assume that there is little difference in the behavior, formation, and toxicity of PCDD/Fs and MXDD/Fs. Indeed, for most of the cases, the affinity is defined by these weak interactions. Only eight native standards are available for the MXDD/Fs; hence, the use of similar compounds (native and 13C 12-labeled), such as PCDD/Fs, is required to optimize and to validate experimental methods. This would allow conclusions to be applied for the MXDD/Fs without extended studies invotving complex synthesis methods. Experimental design methodology was used to evaluate the influence of five parameters (temperature, pressure, static time, number of cycles, and solvent nature) on the polyhalogenated dibenzodioxin and -furan (PXDD/Fs) extractions in different materials. The extraction profiles and the optimal operating conditions were determined for each matrix from the modeling of extraction performance. The two following effects, the relative peak area and the co-extracted matrix (CEM), were screened in this study. The temperature of extraction was found to be the most important parameter. ASE offers automation and appears to be as efficient as Soxhlet or Soxtet; however, a major benefit was that a 4-fold decrease in extraction time was obtained. Results suggest that extraction efficiency was quantitative with extraction times as low as 15 min for all congeners at 130 °C with a mixed solvent (n-hexane/acetone (1/1)). Under these operating conditions, the CEM and the degradation of the highly brominated compounds were minimized. The analysis of some real life samples from municipal solid waste incinerators showed significant amounts of PXDD/Fs.

Dates et versions

hal-00291352 , version 1 (27-06-2008)

Identifiants

Citer

Hugues Preud'Homme, M. Potin-Gautier. Optimization of Accelerated Solvent Extraction for Polyhalogenated Dibenzo-p-Dioxins and Benzo-p-furans in Mineral and Environmental Matrixes Using Experimental Designs. Analytical Chemistry, 2003, 75 (22), pp.6109-6118. ⟨10.1021/ac0341665⟩. ⟨hal-00291352⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More