Distribution-free and link-free estimation for a multivariate semiparametric sample selection model

Marie Chavent 1, 2 Jérôme Saracco 2, 3
2 CQFD - Quality control and dynamic reliability
INRIA Futurs, Université Bordeaux Segalen - Bordeaux 2, Université Sciences et Technologies - Bordeaux 1, CNRS - Centre National de la Recherche Scientifique : UMR5251
Abstract : Most of the prevalent estimation methods for sample selection model rely heavely on parametric assumptions. We consider in this communication a multivariate semiparametric sample selection model and we develop a geometric approach to the estimation of the slope vectors in the outcome equation and in the selection equation. Contrary to most existing methods, we deal symmetrically with both slope vectors. The estimation method is link-free and distribution-free, it works in two main steps: a multivariate Sliced Inverse Regression step, and a Canonical Analysis step. We establish √n-consistency and asymptotic normality of the estimates. We give results from a simulation study in order to illustrate the estimation method.
Liste complète des métadonnées

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00278290
Contributor : Marie Chavent <>
Submitted on : Saturday, May 10, 2008 - 5:28:40 PM
Last modification on : Thursday, January 11, 2018 - 6:22:24 AM
Document(s) archivé(s) le : Friday, September 28, 2012 - 2:31:10 PM

File

article-asmda2007-saracco.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00278290, version 1

Collections

Citation

Marie Chavent, Jérôme Saracco. Distribution-free and link-free estimation for a multivariate semiparametric sample selection model. ASMDA 2007, May 2007, Chania, Crète, Greece. 2007. 〈hal-00278290〉

Share

Metrics

Record views

333

Files downloads

151