On some entropy functionals derived from Rényi information divergence

Abstract : We consider the maximum entropy problems associated with Rényi $Q$-entropy, subject to two kinds of constraints on expected values. The constraints considered are a constraint on the standard expectation, and a constraint on the generalized expectation as encountered in nonextensive statistics. The optimum maximum entropy probability distributions, which can exhibit a power-law behaviour, are derived and characterized. The Rényi entropy of the optimum distributions can be viewed as a function of the constraint. This defines two families of entropy functionals in the space of possible expected values. General properties of these functionals, including nonnegativity, minimum, convexity, are documented. Their relationships as well as numerical aspects are also discussed. Finally, we work out some specific cases for the reference measure $Q(x)$ and recover in a limit case some well-known entropies.
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00276749
Contributeur : Jean-François Bercher <>
Soumis le : jeudi 1 mai 2008 - 19:37:11
Dernière modification le : jeudi 9 février 2017 - 15:52:00
Document(s) archivé(s) le : vendredi 28 mai 2010 - 18:09:58

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jean-François Bercher. On some entropy functionals derived from Rényi information divergence. Information Sciences, Elsevier, 2008, 178 (12), pp.2489-2506. 〈10.1016/j.ins.2008.02.003〉. 〈hal-00276749〉

Partager

Métriques

Consultations de la notice

425

Téléchargements de fichiers

237