Template estimation form unlabeled point set data and surfaces for Computational Anatomy

Abstract : A central notion in Computational Anatomy is the generation of registration maps,mapping a large set of anatomical data to a common coordinate system to study intra-population variability and inter-population differences. In previous work methods for estimating the common coordinate system or the template given a collection imaging data were presented based on the notion of Frechet mean estimation using a metric on the space of diffeomorphisms. In this paper we extend the methodology to the estimation of a template given a collection of unlabeled point sets and surfaces. Using a representation of points and surfaces as currents a Reproducing Kernel Hilbert Space (RKHS) norm is induced on the space of Borel measures. Using this norm and a metric on the space of diffeomorphisms the template estimation problem is possed as a minimum mean squared error estimation problem. An efficient alternating conjugate gradient decent algorithm is derived and results exemplifying the methodology are presented.
Type de document :
Communication dans un congrès
1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. 2006
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00263576
Contributeur : Joan Alexis Glaunès <>
Soumis le : mercredi 12 mars 2008 - 14:53:24
Dernière modification le : mardi 10 octobre 2017 - 11:22:03
Document(s) archivé(s) le : vendredi 21 mai 2010 - 00:22:56

Fichier

mcfa06_GlaunesJoshi.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00263576, version 1

Collections

Citation

Joan Alexis Glaunès, Sarang Joshi. Template estimation form unlabeled point set data and surfaces for Computational Anatomy. 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. 2006. 〈hal-00263576〉

Partager

Métriques

Consultations de
la notice

254

Téléchargements du document

277