Asymptotic behaviour of a family of gradient algorithms in R^d and Hilbert spaces

Abstract : The asymptotic behaviour of a family of gradient algorithms (including the methods of steepest descent and minimum residues) for the optimisation of bounded quadratic operators in R^d and Hilbert spaces is analyzed. The results obtained generalize those of Akaike (1959) in several directions. First, all algorithms in the family are shown to have the same asymptotic behaviour (convergence to a two-point attractor), which implies in particular that they have similar asymptotic convergence rates. Second, the analysis also covers the Hilbert space case. A detailed analysis of the stability property of the attractor is provided.
Type de document :
Article dans une revue
Mathematical Programming, Series A, Springer, 2006, 107, pp.409-438. <10.1007/s10107-005-0602-7>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00259553
Contributeur : Luc Pronzato <>
Soumis le : jeudi 28 février 2008 - 15:04:43
Dernière modification le : lundi 21 mars 2016 - 17:35:52
Document(s) archivé(s) le : jeudi 20 mai 2010 - 23:44:51

Fichiers

PWZ-Mathprg.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Luc Pronzato, Henry Wynn, Anatoly Zhigljavsky. Asymptotic behaviour of a family of gradient algorithms in R^d and Hilbert spaces. Mathematical Programming, Series A, Springer, 2006, 107, pp.409-438. <10.1007/s10107-005-0602-7>. <hal-00259553>

Partager

Métriques

Consultations de
la notice

221

Téléchargements du document

93