Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Analysis of fast versions of the euclid algorithm

Eda Cesaratto 1 Julien Clément 1 Benoît Daireaux 1 Loïck Lhote 1 Véronique Maume-Deschamps 1 Brigitte Vallée 1
1 Equipe AMACC - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : There exist fast variants of the gcd algorithm which are all based on principles due to Knuth and Sch¨onhage. On inputs of size n, these algorithms use a Divide and Conquer approach, perform FFT multiplications and stop the recursion at a depth slightly smaller than lg n. A rough estimate of the worst-case complexity of these fast versions provides the bound O(n(log n)2 log log n).
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download
Contributor : Hal System <>
Submitted on : Monday, January 21, 2008 - 2:57:09 PM
Last modification on : Tuesday, February 5, 2019 - 12:12:41 PM
Long-term archiving on: : Monday, June 27, 2011 - 6:07:59 PM


Publisher files allowed on an open archive


  • HAL Id : hal-00211424, version 1


Eda Cesaratto, Julien Clément, Benoît Daireaux, Loïck Lhote, Véronique Maume-Deschamps, et al.. Analysis of fast versions of the euclid algorithm. 2008. ⟨hal-00211424⟩



Record views


Files downloads