Sampling strategies for bag-of-features image classification

Emmanuel Nowak 1, 2 Frédéric Jurie 1 Bill Triggs 1
1 LEAR - Learning and recognition in vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Bag-of-features representations have recently become popular for content based image classification owing to their simplicity and good performance. They evolved from texton methods in texture analysis. The basic idea is to treat images as loose collections of independent patches, sampling a representative set of patches from the image, evaluating a visual descriptor vector for each patch independently, and using the resulting distribution of samples in descriptor space as a characterization of the image. The four main implementation choices are thus how to sample patches, how to describe them, how to characterize the resulting distributions and how to classify images based on the result. We concentrate on the first issue, showing experimentally that for a representative selection of commonly used test databases and for moderate to large numbers of samples, random sampling gives equal or better classifiers than the sophisticated multiscale interest operators that are in common use. Although interest operators work well for small numbers of samples, the single most important factor governing performance is the number of patches sampled from the test image and ultimately interest operators can not provide enough patches to compete. We also study the influence of other factors including codebook size and creation method, histogram normalization method and minimum scale for feature extraction.
Type de document :
Communication dans un congrès
Ales Leonardis and Horst Bischof and Axel Pinz. 9th European Conference on Computer Vision (ECCV '06), May 2006, Graz, Austria. Springer, 3954, pp.490-503, 2006, Lecture Notes in Computer Science (LNCS). 〈10.1007/11744085_38〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00203752
Contributeur : Hal System <>
Soumis le : lundi 14 janvier 2008 - 16:11:59
Dernière modification le : mardi 5 juin 2018 - 18:00:02
Document(s) archivé(s) le : mardi 13 avril 2010 - 17:02:22

Fichier

eccv06.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

IMAG | INRIA | UGA

Citation

Emmanuel Nowak, Frédéric Jurie, Bill Triggs. Sampling strategies for bag-of-features image classification. Ales Leonardis and Horst Bischof and Axel Pinz. 9th European Conference on Computer Vision (ECCV '06), May 2006, Graz, Austria. Springer, 3954, pp.490-503, 2006, Lecture Notes in Computer Science (LNCS). 〈10.1007/11744085_38〉. 〈hal-00203752〉

Partager

Métriques

Consultations de la notice

832

Téléchargements de fichiers

2639