Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces

Abstract : A discretisation scheme for heterogeneous anisotropic diffusion problems on general meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control volumes and at some internal interfaces which may for instance be chosen at the diffusion tensor discontinuities. The scheme is therefore completely cell centred if no edge unknown is kept. It is shown to be accurate on several numerical examples. Mathematical convergence of the approximate solution to the continuous solution is obtained for general (possibly discontinuous) tensors, general (possibly non-conforming) meshes, and with no regularity assumption on the solution. An error estimate is then drawn under sufficient regularity assumptions on the solution.
Type de document :
Article dans une revue
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2010, 30 (4), pp.1009-1043. 〈10.1093/imanum/drn084〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00203269
Contributeur : Raphaele Herbin <>
Soumis le : mardi 9 décembre 2008 - 09:40:34
Dernière modification le : mercredi 10 octobre 2018 - 01:26:34
Document(s) archivé(s) le : vendredi 24 septembre 2010 - 12:16:12

Fichiers

suchirev.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Robert Eymard, Thierry Gallouët, Raphaele Herbin. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2010, 30 (4), pp.1009-1043. 〈10.1093/imanum/drn084〉. 〈hal-00203269v5〉

Partager

Métriques

Consultations de la notice

735

Téléchargements de fichiers

352