Skip to Main content Skip to Navigation
Journal articles

Axiomatic structure of k-additive capacities

Abstract : In this paper we deal with the problem of axiomatizing the preference relations modelled through Choquet integral with respect to a $k$-additive capacity, i.e. whose Möbius transform vanishes for subsets of more than $k$ elements. Thus, $k$-additive capacities range from probability measures ($k=1$) to general capacities ($k=n$). The axiomatization is done in several steps, starting from symmetric 2-additive capacities, a case related to the Gini index, and finishing with general $k$-additive capacities. We put an emphasis on 2-additive capacities. Our axiomatization is done in the framework of social welfare, and complete previous results of Weymark, Gilboa and Ben Porath, and Gajdos.
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download
Contributor : Michel Grabisch Connect in order to contact the contributor
Submitted on : Thursday, November 15, 2007 - 5:39:22 PM
Last modification on : Monday, May 9, 2022 - 11:18:15 AM
Long-term archiving on: : Monday, April 12, 2010 - 2:22:03 AM


Files produced by the author(s)



Pedro Miranda, Michel Grabisch, Pedro Gil. Axiomatic structure of k-additive capacities. Mathematical Social Sciences, Elsevier, 2005, 49 (2), pp.153-178. ⟨10.1016/j.mathsocsci.2004.06.001⟩. ⟨hal-00188165⟩



Record views


Files downloads