Implementation of recurrent multi-models for system identification

Abstract : Multi-modeling is a recent tool proposed for modeling complex nonlinear systems by the use of a combination of relatively simple set of local models. Due to their simplicity, linear local models are mainly used in such structures. In this work, multi-models having polynomial local models are described and applied in system identification. Estimation of model's parameters is carried out using least squares algorithms which reduce considerably computation time as compared to iterative algorithms. The proposed methodology is applied to recurrent models implementation. NARMAX and NOE multi-models are implemented and compared to their corresponding neural network implementations. Obtained results show that the proposed recurrent multi-model architectures have many advantages over neural network models.
Type de document :
Communication dans un congrès
Fourth International Conference on Informatics in Control, Automation and Robotics, May 2007, Angers, France. pp.314-321, 2007
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00182394
Contributeur : Rachid Malti <>
Soumis le : jeudi 25 octobre 2007 - 17:04:43
Dernière modification le : vendredi 16 février 2018 - 19:10:01
Document(s) archivé(s) le : lundi 12 avril 2010 - 00:41:59

Fichier

C3_044_Thiaw.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00182394, version 1

Citation

Lamine Thiaw, Kurosh Madani, Rachid Malti, Gustave Sow. Implementation of recurrent multi-models for system identification. Fourth International Conference on Informatics in Control, Automation and Robotics, May 2007, Angers, France. pp.314-321, 2007. 〈hal-00182394〉

Partager

Métriques

Consultations de la notice

366

Téléchargements de fichiers

282