Harmonic Analysis on the quantum Lorentz group

Abstract : This work begins with a review of complexification and realification of Hopf algebras. We emphasize the notion of multiplier Hopf algebras for the description of different classes of functions (compact supported, bounded, unbounded) on complex quantum groups and the construction of the associated left and right Haar measure. Using a continuation of $6j$ symbols of $SU_q (2)$ with complex spins, we give a new description of the unitary representations of $SL_q (2,\CC)_{\RR}$ and find explicit expressions for the characters of $SL_q (2,\CC)_{\RR}$. The major theorem of this article is the Plancherel theorem for the Quantum Lorentz Group.
Type de document :
Article dans une revue
Communications in Mathematical Physics, Springer Verlag, 1999, 207 (3), pp.499-555. <10.1007/s002200050736>


https://hal.archives-ouvertes.fr/hal-00178191
Contributeur : Francoise Duceau <>
Soumis le : mercredi 10 octobre 2007 - 13:05:06
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Collections

Citation

E. Buffenoir, Ph. Roche. Harmonic Analysis on the quantum Lorentz group. Communications in Mathematical Physics, Springer Verlag, 1999, 207 (3), pp.499-555. <10.1007/s002200050736>. <hal-00178191>

Exporter

Partager

Métriques

Consultations de la notice

86