Skip to Main content Skip to Navigation
Journal articles

Rate models for conductance-based cortical neuronal networks.

Abstract : Population rate models provide powerful tools for investigating the principles that underlie the cooperative function of large neuronal systems. However, biophysical interpretations of these models have been ambiguous. Hence, their applicability to real neuronal systems and their experimental validation have been severely limited. In this work, we show that conductance-based models of large cortical neuronal networks can be described by simplified rate models, provided that the network state does not possess a high degree of synchrony. We first derive a precise mapping between the parameters of the rate equations and those of the conductance-based network models for time-independent inputs. This mapping is based on the assumption that the effect of increasing the cell's input conductance on its f-I curve is mainly subtractive. This assumption is confirmed by a single compartment Hodgkin-Huxley type model with a transient potassium A-current. This approach is applied to the study of a network model of a hypercolumn in primary visual cortex. We also explore extensions of the rate model to the dynamic domain by studying the firing-rate response of our conductance-based neuron to time-dependent noisy inputs. We show that the dynamics of this response can be approximated by a time-dependent second-order differential equation. This phenomenological single-cell rate model is used to calculate the response of a conductance-based network to time-dependent inputs.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00173803
Contributor : Boris Lamotte d'Incamps <>
Submitted on : Thursday, September 20, 2007 - 4:08:45 PM
Last modification on : Friday, April 10, 2020 - 5:17:21 PM

Identifiers

Citation

Oren Shriki, David Hansel, Haim Sompolinsky. Rate models for conductance-based cortical neuronal networks.. Neural Computation, Massachusetts Institute of Technology Press (MIT Press), 2003, 15 (8), pp.1809-41. ⟨10.1162/08997660360675053⟩. ⟨hal-00173803⟩

Share

Metrics

Record views

420