Evolving Dynamic Change and Exchange of Genotype Encoding in Genetic Algorithms for Difficult Optimization Problems

Abstract : The application of genetic algorithms (GAs) to many optimization problems in organizations often results in good performance and high quality solutions. For successful and efficient use of GAs, it is not enough to simply apply simple GAs (SGAs). In addition, it is necessary to find a proper representation for the problem and to develop appropriate search operators that fit well to the properties of the genotype encoding. The representation must at least be able to encode all possible solutions of an optimization problem, and genetic operators such as crossover and mutation should be applicable to it. In this paper, serial alternation strategies between two codings are formulated in the framework of dynamic change of genotype encoding in GAs for function optimization. Likewise, a new variant of GAs for difficult optimization problems denoted {\it Split-and-Merge} GA (SM-GA) is developed using a parallel implementation of an SGA and evolving a dynamic exchange of individual representation in the context of Dual Coding concept. Numerical experiments show that the evolved SM-GA significantly outperforms an SGA with static single coding.
Type de document :
Communication dans un congrès
IEEE Congress on Evolutionary Computation CEC2007, Sep 2007, singapore, Singapore. IEEE Press, pp.4516-4523, 2007
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00164788
Contributeur : Sébastien Verel <>
Soumis le : vendredi 28 mars 2008 - 19:18:13
Dernière modification le : lundi 23 février 2009 - 16:44:06
Document(s) archivé(s) le : jeudi 8 avril 2010 - 23:50:09

Fichiers

maroun-papier-CEC2007.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00164788, version 1
  • ARXIV : 0803.4241

Collections

Citation

Maroun Bercachi, Philippe Collard, Manuel Clergue, Sébastien Verel. Evolving Dynamic Change and Exchange of Genotype Encoding in Genetic Algorithms for Difficult Optimization Problems. IEEE Congress on Evolutionary Computation CEC2007, Sep 2007, singapore, Singapore. IEEE Press, pp.4516-4523, 2007. 〈hal-00164788〉

Partager

Métriques

Consultations de
la notice

188

Téléchargements du document

242