Tree inclusions in windows and slices

Abstract : $P$ is an embedded subtree of $T$ if $P$ can be obtained by deleting some nodes from $T$: if a node $v$ is deleted, all edges adjacent to $v$ are also deleted, and outgoing edges are replaced by edges going from the parent of $v$ (if it exists) to the children of $v$. Deciding whether $P$ is an embedded subtree of $T$ is known to be NP-complete. Given two trees (a target $T$ and a pattern $P$) and a natural number $w$, we address two problems: 1. counting the number of windows of $T$ having height exactly $w$ and containing pattern $P$ as an embedded subtree, and 2. counting the number of slices of $T$ having height exactly $w$ and containing pattern $P$ as an embedded subtree.
Type de document :
Pré-publication, Document de travail
2007
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00159127
Contributeur : Irene Guessarian <>
Soumis le : mardi 3 juillet 2007 - 13:05:59
Dernière modification le : jeudi 15 novembre 2018 - 20:26:55
Document(s) archivé(s) le : jeudi 8 avril 2010 - 22:16:25

Fichiers

cg.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00159127, version 1

Collections

Citation

Patrick Cegielski, Irene Guessarian. Tree inclusions in windows and slices. 2007. 〈hal-00159127〉

Partager

Métriques

Consultations de la notice

277

Téléchargements de fichiers

109