Theorems on Efficient Argument Reductions

Abstract : A commonly used argument reduction technique in elementary function computations begins with two positive floating point numbers α and γ that approximate (usually irrational but not necessarily) numbers 1/C and C, e.g., C = 2π for trigonometric functions and ln 2 for ex. Given an argument to the function of interest it extracts z as defined by xα = z + ς with z = k2−N and |ς| ≤ 2−N−1, where k,N are integers and N ≥ 0 is preselected, and then computes u = x − zγ. Usually zγ takes more bits than the working precision provides for storing its significand, and thus exact x−zγ may not be represented exactly by a floating point number of the same precision. This will cause performance penalty when the working precision is the highest available on the underlying hardware and thus considerable extra work is needed to get all the bits of x − zγ right. This paper presents theorems that show under mild conditions that can be easily met on today's computer hardware and still allow α ≈ 1/C and γ ≈ C to almost the full working precision, x−zγ is a floating point number of the same precision. An algorithmic procedure based on the theorems is obtained. The results will enhance performance, in particular on machines that has hardware support for fused multiply-add (fma) instruction(s).
Type de document :
Communication dans un congrès
IEEE. 16th IEEE Symposium on Computer Arithmetic, 2003, Santiago de Compostela, Spain. IEEE, pp.129-136, 2003, 〈10.1109/ARITH.2003.1207670〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00156244
Contributeur : Marc Daumas <>
Soumis le : mercredi 20 juin 2007 - 14:41:47
Dernière modification le : mercredi 20 juin 2007 - 16:39:50
Document(s) archivé(s) le : jeudi 8 avril 2010 - 20:53:51

Fichier

LiBolDau03.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Ren Cang Li, Sylvie Boldo, Marc Daumas. Theorems on Efficient Argument Reductions. IEEE. 16th IEEE Symposium on Computer Arithmetic, 2003, Santiago de Compostela, Spain. IEEE, pp.129-136, 2003, 〈10.1109/ARITH.2003.1207670〉. 〈hal-00156244〉

Partager

Métriques

Consultations de
la notice

248

Téléchargements du document

164