Skip to Main content Skip to Navigation
Journal articles

Recovery of a function involving gene duplication by retroposition in Saccharomyces cerevisiae.

Abstract : The duplication of DNA sequences contributes to genomic plasticity and is known to be one of the key factors responsible for evolution. The mechanisms underlying these rare events, which have been frequently mentioned by authors performing genomic analysis, have not yet been completely elucidated. These mechanisms were approached here in the yeast Saccharomyces cerevisiae, using a positive selection screen based on a particular mutated allele of the URA2 gene. Spontaneous revertants containing a duplication of the terminal part of the URA2 gene were selected and analyzed. Some important features of the duplicated regions, such as their chromosome location, size, and insertion sites, were characterized. The events selected correspond to a single inter- or intrachromosomal gene duplication process. The duplicated ATCase sequence is generally punctuated by a poly(A) tract and is always located in Ty1 sequences. In addition, the activation of a Ty1 transcription process increased the frequency of the duplication events. All in all, these data suggest that the duplication mechanism involves the reverse transcription of mRNA and the subsequent integration of the cDNA into a Ty1 area. The Ty1 elements and the retrotransposon-encoded function are key factors contributing to chromosomal reshaping. The genomic rearrangements described constitute experimental evidence for the recovery of a function involving duplication by retroposition.
Document type :
Journal articles
Complete list of metadata
Contributor : Gilberte Niedergang Connect in order to contact the contributor
Submitted on : Tuesday, November 21, 2006 - 11:48:53 AM
Last modification on : Thursday, April 23, 2020 - 2:26:34 PM

Links full text




Joseph Schacherer, yves Tourrette, Jean-Luc Souciet, Serge Potier, Jacky de Montigny. Recovery of a function involving gene duplication by retroposition in Saccharomyces cerevisiae.. Genome Research, Cold Spring Harbor Laboratory Press, 2004, 14 (7), pp.1291-7. ⟨10.1101/gr.2363004⟩. ⟨hal-00115395⟩



Record views