Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes

Abstract : The aim of this paper is to present two methods for the calculation of the nonlinear normal modes of vibration for undamped non-linear mechanical systems: the time integration periodic orbit method and the modal representation method. In the periodic orbit method, the nonlinear normal mode is obtained by making the continuation of branches of periodic orbits of the equation of motion. The terms ''periodic orbits'' means a closed trajectory in the phase space, which is obtained by time integration. In the modal representation method, the nonlinear normal mode is constructed in terms of amplitude, phase, mode shape, and frequency, with the distinctive feature that the last two quantities are amplitude and total phase dependent. The methods are compared on two DOF strongly nonlinear systems.
Type de document :
Article dans une revue
Computers and Structures, Elsevier, 2006, 84 (24-25), pp.1565-1576. <10.1016/j.compstruc.2006.01.011>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01580935
Contributeur : Mathias Legrand <>
Soumis le : dimanche 3 septembre 2017 - 22:45:46
Dernière modification le : jeudi 7 septembre 2017 - 01:07:00

Fichier

ABBC.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Rémi Arquier, Sergio Bellizzi, Robert Bouc, Bruno Cochelin. Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Computers and Structures, Elsevier, 2006, 84 (24-25), pp.1565-1576. <10.1016/j.compstruc.2006.01.011>. <hal-01580935>

Partager

Métriques

Consultations de
la notice

42

Téléchargements du document

7