Robust stabilization in the Martinet case

Abstract : In a previous work, we derived a result of semi-global minimal time robust stabilization for analytic control systems with controls entering linearly, by means of a hybrid state feedback law, under the main assumption of the absence of minimal time singular trajectories. In this paper, we investigate the Martinet case, which is a model case in $\R^3$ where singular minimizers appear, and show that such a stabilization result still holds. Namely, we prove that the solutions of the closed-loop system converge to the origin in quasi minimal time (for a given bound on the controller) with a robustness property with respect to small measurement noise, external disturbances and actuator errors.
Type de document :
Article dans une revue
Control and Cybernetics, Polish Academy of Sciences, 2006, 35 (4), pp.923--945
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00086365
Contributeur : Emmanuel Trélat <>
Soumis le : mardi 18 juillet 2006 - 18:57:39
Dernière modification le : vendredi 26 octobre 2018 - 10:31:00
Document(s) archivé(s) le : mardi 6 avril 2010 - 00:15:02

Fichier

Identifiants

  • HAL Id : hal-00086365, version 1

Citation

Christophe Prieur, Emmanuel Trélat. Robust stabilization in the Martinet case. Control and Cybernetics, Polish Academy of Sciences, 2006, 35 (4), pp.923--945. 〈hal-00086365〉

Partager

Métriques

Consultations de la notice

359

Téléchargements de fichiers

81