On the role of abnormal minimizers in sub-Riemannian geometry

Abstract : Consider a sub-Riemannian geometry $(U,D,g)$ where $U$ is a neighborhood at $0$ in $\R^n,$ $D$ is a rank-2 smooth $(C^\infty $ or $C^\omega )$ distribution and $g$ is a smooth metric on $D$. The objective of this article is to explain the role of abnormal minimizers in SR-geometry. It is based on the analysis of the Martinet SR-geometry.
Document type :
Journal articles
Complete list of metadatas

Cited literature [41 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00086308
Contributor : Emmanuel Trélat <>
Submitted on : Tuesday, July 18, 2006 - 2:17:33 PM
Last modification on : Wednesday, July 11, 2018 - 3:41:48 PM
Long-term archiving on : Tuesday, April 6, 2010 - 12:14:10 AM

Files

Identifiers

Citation

Bernard Bonnard, Emmanuel Trélat. On the role of abnormal minimizers in sub-Riemannian geometry. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2001, 6 (10) 3, pp.405--491. ⟨hal-00086308⟩

Share

Metrics

Record views

215

Files downloads

174