The transcendence needed to compute the sphere and wave front in Martinet sub-Riemannian geometry

Abstract : Consider a \it{sub-Riemannian geometry} $(U,D,g)$ where $U$ is a neighborhood of $O$ in $\mathbb{R}^3$, $D$ is a \it{Martinet type distribution} identified to $Ker \,\omega$, $\omega =dz-\f{y^2}{2}dx$, $q=(x,y,z)$ and $g$ is a \it{metric on $D$} which can be taken in the normal form : \mbox{$a(q)dx^2+c(q)dy^2$}, \mbox{$a=1+yF(q)$}, \mbox{$c=1+G(q)$}, \mbox{$G_{|x=y=0}=0$}. In a previous article we analyzed the \it{flat case} : \mbox{$a=c=1$} ; we showed that the set of geodesics is integrable using \it{elliptic integrals} of the \it{first and second kind} ; moreover we described the sphere and the wave front near the abnormal direction using the \it{\mbox{exp-log} category}. The objective of this article is to analyze the transcendence we need to compute the sphere and the wave front of small radius in the abnormal direction and globally when we consider the gradated normal form of order $0$ : \mbox{$a=(1+\alpha y)^2$}, \mbox{$c=(1+\beta x + \gamma y)^2$}, where $\alpha, \beta, \gamma$ are real parameters.
Document type :
Journal articles
Complete list of metadatas

Cited literature [13 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00086288
Contributor : Emmanuel Trélat <>
Submitted on : Tuesday, July 18, 2006 - 2:01:07 PM
Last modification on : Wednesday, July 11, 2018 - 3:41:45 PM
Long-term archiving on : Tuesday, April 6, 2010 - 12:13:43 AM

Identifiers

  • HAL Id : hal-00086288, version 1

Citation

Bernard Bonnard, Geneviève Launay, Emmanuel Trélat. The transcendence needed to compute the sphere and wave front in Martinet sub-Riemannian geometry. Journal of Mathematical Sciences, Springer Verlag (Germany), 2001, 103 (6), pp.686-708. ⟨hal-00086288⟩

Share

Metrics

Record views

305

Files downloads

164