Skip to Main content Skip to Navigation
Journal articles

Asymptotic matricial models and QWEP property for q-Araki-Woods von Neumann algebras

Abstract : Using Speicher central limit Theorem we provide Hiai's q-Araki-Woods von Neumann algebras with nice asymptotic matricial models. Then, we use this model and an elaborated ultraproduct procedure, to show that all q-Araki-Woods von Neumann algebras are QWEP.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00077608
Contributor : Alexandre Nou <>
Submitted on : Wednesday, May 31, 2006 - 2:04:16 PM
Last modification on : Friday, July 6, 2018 - 3:18:04 PM
Document(s) archivé(s) le : Monday, April 5, 2010 - 10:01:33 PM

Files

Identifiers

Citation

Alexandre Nou. Asymptotic matricial models and QWEP property for q-Araki-Woods von Neumann algebras. Journal of Functional Analysis, Elsevier, 2006, 232 (2), pp.295-327. ⟨hal-00077608⟩

Share

Metrics

Record views

166

Files downloads

103