On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures

Abstract : We study the notion of limit sets of cellular automata associated with probability measures (mu-limit sets). This notion was introduced by P. Kurka and A. Maass. It is a refinement of the classical notion of omega-limit sets dealing with the typical long term behavior of cellular automata. It focuses on the words whose probability of appearance does not tend to 0 as time tends to infinity (the persistent words). In this paper, we give a characterisation of the persistent language for non sensible cellular automata associated with Bernouilli measures. We also study the computational complexity of these languages. We show that the persistent language can be non-recursive. But our main result is that the set of quasi-nilpotent cellular automata (those with a single configuration in their mu-limit set) is neither recursively enumerable nor co-recursively enumerable.
Type de document :
Communication dans un congrès
Lecture Notes in Computer Science. Aug 2006, Stará Lesná, Springer, pp.190-201, 2006, Lecture Notes in computer Science (LNCS) n° 4162
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00022186
Contributeur : Guillaume Theyssier <>
Soumis le : lundi 2 octobre 2006 - 10:42:30
Dernière modification le : lundi 16 juillet 2018 - 16:24:03
Document(s) archivé(s) le : lundi 20 septembre 2010 - 17:05:12

Identifiants

Collections

Citation

Laurent Boyer, Victor Poupet, Guillaume Theyssier. On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures. Lecture Notes in Computer Science. Aug 2006, Stará Lesná, Springer, pp.190-201, 2006, Lecture Notes in computer Science (LNCS) n° 4162. 〈hal-00022186v2〉

Partager

Métriques

Consultations de la notice

489

Téléchargements de fichiers

226