Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Planar Binary Trees and Perturbative Calculus of Observables in Classical Field Theory

Abstract : Consider the Klein-Gordon equation coupled with an interaction term $(\Box+m^2)\phi+\lambda\psi^p$. For the linear Klein-Gordon equation, a kind of generalized Noether's theorem gives us a conserved quantity. The purpose of this paper is to find an analogue of this conserved quantity in the interacting case. We see that it can be done perturbatively, and we define explicitely a conserved quantity using a perturbative expansion based on Planar Binary Tree and a kind of Feynman rules. Only the case $p=2$ is treated but our approach can be generalized to any $\phi^p$-theory.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00020097
Contributor : Dikanaina Harrivel <>
Submitted on : Monday, March 6, 2006 - 10:12:03 AM
Last modification on : Monday, March 9, 2020 - 6:15:51 PM

Links full text

Identifiers

Collections

Citation

Dikanaina Harrivel. Planar Binary Trees and Perturbative Calculus of Observables in Classical Field Theory. 2005. ⟨hal-00020097⟩

Share

Metrics

Record views

91