Operator Scaling Stable Random Fields

Abstract : A scalar valued random field is called operator-scaling if it satisfies a self-similarity property for some matrix E with positive real parts of the eigenvalues. We present a moving average and a harmonizable representation of stable operator scaling random fields by utilizing so called E-homogeneous functions. These fields also have stationary increments and are stochastically continuous. In the Gaussian case critical Hölder-exponents and the Hausdorff-dimension of the sample paths are also obtained.
Type de document :
Article dans une revue
Stochastic Processes and their Applications, Elsevier, 2007, 117 (3), pp.312-332. <10.1016/j.spa.2006.07.004>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00019844
Contributeur : Hermine Biermé <>
Soumis le : mardi 28 février 2006 - 14:44:29
Dernière modification le : mardi 11 octobre 2016 - 12:02:41
Document(s) archivé(s) le : samedi 3 avril 2010 - 22:37:03

Fichiers

Identifiants

Collections

Citation

Hermine Biermé, Mark Meerschaert, Hans-Peter Scheffler. Operator Scaling Stable Random Fields. Stochastic Processes and their Applications, Elsevier, 2007, 117 (3), pp.312-332. <10.1016/j.spa.2006.07.004>. <hal-00019844>

Partager

Métriques

Consultations de
la notice

134

Téléchargements du document

112