Statistical region-based active contours with exponential family observations

Abstract : In this paper, we focus on statistical region-based active contour models where image features (e.g. intensity) are random variables whose distribution belongs to some parametric family (e.g. exponential) rather than confining ourselves to the special Gaussian case. Using shape derivation tools, our effort focuses on constructing a general expression for the derivative of the energy (with respect to a domain) and derive the corresponding evolution speed. A general result is stated within the framework of multi-parameter exponential family. More particularly, when using Maximum Likelihood estimators, the evolution speed has a closed-form expression that depends simply on the probability density function, while complicating additive terms appear when using other estimators, e.g. momentsmethod. Experimental results on both synthesized and real images demonstrate the applicability of our approach.
Type de document :
Communication dans un congrès
IEEE ICASSP, May 2006, Toulouse, France. 2, pp.113-116, 2006
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00017910
Contributeur : Image Greyc <>
Soumis le : lundi 4 février 2013 - 18:14:03
Dernière modification le : mardi 5 juin 2018 - 10:14:42
Document(s) archivé(s) le : lundi 17 juin 2013 - 14:37:17

Fichier

ICASSP-2006-Lecellier.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00017910, version 1

Citation

François Lecellier, Stéphanie Jehan-Besson, Gilles Aubert, Marinette Revenu, Jalal M. Fadili. Statistical region-based active contours with exponential family observations. IEEE ICASSP, May 2006, Toulouse, France. 2, pp.113-116, 2006. 〈hal-00017910〉

Partager

Métriques

Consultations de la notice

214

Téléchargements de fichiers

89