Uniqueness for unbounded solutions to stationary viscous Hamilton--Jacobi equations

Abstract : We consider a class of stationary viscous Hamilton--Jacobi equations as $$ \left\{\begin{array}{l} \la\,u-{\rm div}(A(x) \nabla u)=H(x,\nabla u)\mbox{ in }\Omega ,\\ u=0\mbox{ on }\partial\Omega\end{array} \right. $$ where $\la\geq 0$, $A(x)$ is a bounded and uniformly elliptic matrix and $H(x,\xi)$ is convex in $\xi$ and grows at most like $|\xi|^q+f(x)$, with $1 < q < 2$ and $f \in \elle {\frac N{q'}}$. Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy--type estimate, i.e. $(1+|u|)^{\bar q-1}\,u\in \acca$, for a certain (optimal) exponent $\bar q$. This completes the recent results in \cite{GMP}, where the existence of at least one solution in this class has been proved.
Type de document :
Article dans une revue
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2006, 5 (1), pp.107--136
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00017876
Contributeur : Guy Barles <>
Soumis le : jeudi 26 janvier 2006 - 09:23:11
Dernière modification le : samedi 15 septembre 2018 - 01:18:46
Document(s) archivé(s) le : samedi 3 avril 2010 - 19:39:19

Identifiants

Collections

Citation

Guy Barles, Alessio Porretta. Uniqueness for unbounded solutions to stationary viscous Hamilton--Jacobi equations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2006, 5 (1), pp.107--136. 〈hal-00017876〉

Partager

Métriques

Consultations de la notice

153

Téléchargements de fichiers

73