An introspective algorithm for the integer determinant

Abstract : We present an algorithm computing the determinant of an integer matrix A. The algorithm is introspective in the sense that it uses several distinct algorithms that run in a concurrent manner. During the course of the algorithm partial results coming from distinct methods can be combined. Then, depending on the current running time of each method, the algorithm can emphasize a particular variant. With the use of very fast modular routines for linear algebra, our implementation is an order of magnitude faster than other existing implementations. Moreover, we prove that the expected complexity of our algorithm is only O(n^3 log^{2.5}(n ||A||) ) bit operations in the dense case and O( Omega n^{1.5} log^2(n ||A||) + n^{2.5}log^3(n||A||) ) in the sparse case, where ||A|| is the largest entry in absolute value of the matrix and Omega is the cost of matrix-vector multiplication in the case of a sparse matrix.
Document type :
Other publications
Complete list of metadatas
Contributor : Jean-Guillaume Dumas <>
Submitted on : Thursday, October 19, 2006 - 6:50:32 PM
Last modification on : Monday, November 4, 2019 - 1:18:03 PM
Long-term archiving on : Friday, September 24, 2010 - 10:39:24 AM



Jean-Guillaume Dumas, Anna Urbanska. An introspective algorithm for the integer determinant. 2006. ⟨hal-00014044v4⟩



Record views


Files downloads